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Abstract  

A category is an algebraic structure made up of a collection of objects linked together by 

morphisms. As a foundation of mathematics, categories were created as a way of relating 

algebraic structures and systems of topological spaces In this paper we define a derivative using 

cones in the category of topological modules and use the Lagrange’s principle to obtain 

optimization results in the category. 
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1. Introduction  

The main problem that seems to make the study of optimization in categories difficult is the fact 

that it is algebraic in nature yet most of the optimization is studied in classical analysis. Since the 

innovative use of infinitesimals by Lawvere (1963) and Kock (1981) it has been possible to 

study some parts of analysis in such toposes.Most of the extrema problems involve the order 

properties of the real line and this explains why extrema properties of a complex variable do not 

exist.Sukhinin (1982) introduced the idea of extrema in spaces without norm that is applicable 

even to functions of complex variables. It is this idea we seek to adopt in the ordered category of 

topological modules. The systematic study and use ordered vector spaces and cones in 

mathematics begun around the world after 1950 mainly through the efforts of Russian, Japanese, 

German and Dutch mathematicians. The notion of cones is important in many areas; two notable 

areas are optimization theory and the fixed point theory. Since cones are being employed to solve 

optimization problems, the theory of ordered vector spaces is an indispensable tool for solving a 

variety of applied problems in diverse areas such as engineering, econometrics and the social 

sciences (Charambos and Rabee, 2007). 

A subset C of a vector space V is a cone if αx + βy  belongs to C for any positive scalars α and β  

and any x,y in C.This concept is meaningful for any vector space that allows the concept of 

positive scalars such as spaces over rational ,algebraic and even the real numbers. It follows 

hence that the empty set, the space V and any linear sub space of V including the trivial sub 

space {} are convex cones by this definition. The intersection of two convex cones in the same 

vector space is again a convex cone but their union may fail to be one. The family of convex 

cones is closed under arbitrary linear maps and particularly if C is a convex cone so is its 

opposite C and C C is the largest linear subspace contained in C (Rockafellar, 1997). 

If X is within the Euclidean space, the cone on X is homeomorphic to the union of lines from X 

to another point. That is, the topological cone agrees with the geometric cone when defined. All 

cones are path connected since every point can be connected to the vertex by the homotopy 

ht(x,s) = {x,(1-t)s}.In algebraic topology, cones are used precisely because they embed a space as 

a subspace of a contractible space (Allen,2002).Since cones can be topologically closed, open or 

both then continuity being a central concept in topology can be defined using open 

neighbouhoods that is if X and Y are topological spaces , a function f: XY is continuous  if 
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and only if for all open neighbouhoods of B of f(x) there exists a neighbouhood A of X such 

thatA  f 
-1

(B), (Gaal and Steven, 2009). 

 

2. Literature review  

A category is an algebraic structure that comprises ‘objects’ that are linked by ‘arrows’. A 

category has two basic properties, the ability to compose the arrows associatively and the 

existence of an identity arrow for each object. A simple example is the category of sets whose 

objects are sets and whose arrows are functions. On the other hand, a monoid can be understood 

as a special sort of category and so can any pre-order. Generally objects and arrows may be 

abstract entities of any kind and the notion of category provide a fundamental and abstract way 

to describe mathematical entities and their relationships.This is the central idea of category 

theory, a branch of mathematic which seeks to generalize all of mathematics in terms of objects 

and arrows independent of what the object and arrows represent. 

Virtually every branch of modern mathematics can be defined in terms of categories and in doing 

so revealing deep insights and similarities between seemingly different areas of mathematics. 

Categories were introduced by Eilenberg and Mac Lane (1945). 

A topological module is a module over a topological ring such that scalar multiplication and 

addition are continuous. In abstract algebra, a module over a ring is a generalized notion of a 

vector space, wherein the corresponding scalars lie in an arbitrary ring. An abelian topological 

group that is a module over a topological ring R, in which the multiplication mapping R x A→A, 

taking (r, α) to rα is required to be continuous. A right topological module is defined 

analogously. Every sub module B of a topological module A is a topological module. If the 

module A is separated and B is closed in A, then A/B is a separated module (Bourbaki, 1966). 

The left R- modules together with their module homomorphisms form a category written as R-

Mod which is an abelian category, (Anderson and Fuller, 1992). 

Given a ring R and an R- module, a descending filtration of M is a decreasing sequence of sub 

modules Mn.This is therefore a special case of the notion of groups with the additional condition 

that the sub groups be sub modules. The associated topology is defined as for groups. An 

ascending filtration is defined in the same way (Oksendal and Bent, 2003).In topology and 

analysis, filters are used to define convergence in a manner similar to the role of sequences in 
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metric spaces. Sequences are usually indexed by natural numbers which are a totally ordered 

set.Thus, limits in spaces can be defined using sequences (Victor, 2012). 

2.2 Boundary and Extrema 

Given two real axes X and Y and a function f: X  Y, that takes a closed bounded set A  X to 

a closed bound set B  Y then problems of maxima and minima involves finding points in A that 

are mapped by to either the maximum or minimum points of B. If the closed bounded set is not 

the real line then there will be no maximum or minimum. It is possible however to introduce a 

related idea of extremal point as a point in A that is mapped by the function f to the boundary of 

B. This is done using locally convex topological vector spaces with bounded topology. This is 

done because classical calculus operations work well up to the abstraction of Banach spaces but 

not beyond. Further developments have shown that classical calculus can still work well in 

topological vector spaces more general than Banach spaces provided the topology used is 

bounded. Another good reason for this topological space is that it is amenable to category 

theoretic approach of study (Andreas and Peter, 1997). 

2.3 Classical Lagrange Multiplier  

One of the most common problems in calculus is that of finding maxima and minima of a 

function, but it is often difficult to find a closed form for the function being extremized. Consider 

the optimization problem: maximize f(x, y) subject to g(x, y). We introduce a new variable λ 

called the Lagrange function defined by: 

 (x, y, λ) = f(x, y) + λ {g(x, y) – c} Where the λ term may added or subtracted. If f(x, y) is a 

maximum for the original constrained problem then  λ such that (x, y, λ) is a stationary point 

for the Lagrange function. However, not all stationary points yield a solution to the original 

problem. Thus, this method yields a necessary condition for optimality in constrained problems 

(Vapnyarskii, 2001). The role of Lagrange multipliers in locally convex spaces and the concept 

of extrema can be extended to topological spaces without norm and even to functions of complex 

variables. 
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2.4 Lagrange Multiplier in locally convex spaces without norm 

Sukhinin studied Lagrange multipliers in vector spaces with bounded topology and it is this idea 

we intend to generalize to categories of topological modules. To obtain results similar to those 

found in classical analysis, Sukhinin (1982) used the idea of cones in linear topological spaces 

without norm. We now follow Sukhinin (1982) to get these important definitions; 

2.4.1Cone in a Topological Vector Space without Norm 

Let X be a linear topological vector space without norm. S  X,xoX, then 

S(xo)={hX:UBt(0,):xo+t(h+UB)S} and S+(xo)=X\{(X\S-(xo)}are called 

cones. U is neighbourhood of zero, B is a bounded set and  is a certain system of bounded, 

convex sets in U containing zero.  

2.4.2 Small Map 

Let xoS  X and let Z be a topological vector space. A map r: S → Z will be called β small 

relative to the cone K at the point xo if hK,VU,,B :(t,xh+UB,xo+txS),V is a 

neighborhood  of zero in Z. 

2.4.3 Differentiable Map 

A map f: S → Z is called β differentiable relative to K at the point xo if  

f (xo + h) - f (xo) = f 

(xo) h + r (h). Where f (xo) is a linear continuous operator and the map r: S 

 Z is β small relative point xo. 

 2.4.4 Critical Map 

Let S  X and let Z be a linear space. We say that a map f: S  Z is  critical relative to the 

cone K at the point xoS if zZ,hK,U,,Bt(0,):tzf{[xo+t(h+UB)]S}\f(xo). 

 

2.4.5 Conditional Minimum of Maps 

Let xoS  X, let Z be ordered linear space and let f: S Y be a map satisfying  

f (xo) = 0.We say that xo is a point of conditional β minimum of the map F: S  Z relative to the 

cone K under the condition f (x) = 0 provided 

hKUBt(0,):x[xo+t(h+UB) ]S,f(xo) = 0F(x)F(xo). 
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2.4.6 Theorem 1: Let xoЅ  X, let K1 be a cone in X with vertex at zero, and suppose that the 

map f: Ѕ →Y is such that  

hK1,UBt(0,)xt(UB):[xo+ th + xS][f(xo+ th + x) = f(xo)] and  

f (xo) = 0.Further, let Z be an ordered topological vector space, suppose that the map F: S → Z is 

β differentiable relative to K1 at the point xo.If xo is a point of conditional  minimum of the map 

F relative to K1 and under the condition f (xo) = 0 then F(xo)(h)0 for hK1. 

Sometimes, the theorem above can be given the form of the rule of Lagrange multipiers, as 

shown below; 

Let Z be an ordered topological vector space, g be a continuous linear operator from X into Z, let 

A be a linear (not necessary continuous) operator from X into Y, K be a cone in X, and suppose 

thath (Ker A) K: g (h) ≥0…...*. 

 

Proposition1:Ssuppose (*) above holds, g is a linear is open (AX=Y), and that K = X, then  an 

operator   (Y, Z) such that (g+ A) x = 0 for some x X. Indeed to maximize f(x, y) 

subject g(x, y), we introduce a new variable  and  

 (x, y,) = f(x, y) + [g (x, y) - c]. 

 If f(x, y) is maximum for constrained problem then : (x, y,  ) is a stationary point for (x, y, 

z) i.e.  (x, y,)  ∂Y. since K = X, K is cone, AX = Y, then Y is a cone. In this case (x, y,)  

vertex of Y which is zero. In our case f(x, y) = g(x, y), [g(x, y) – c] = Ax hence (g + oA) x = 0 

implies optimality  

of . 

 

3. Preliminaries and Definitions  

To come up with a criterion for finding extrema in categories with infinitesimals using a 

modification of Sukhinin’s definition of extrema in topological vector space without norms. We 

will need the idea of boundedness and boundary in categories. These will be defined in the 

required categories. The next step will be to define the extremal object in an ordered category of 

topological modules with infinitesimals and finally prove a result on conditions for existence of 

extrema. In this regard we intend to formulate and prove theorem 1 in an ordered category of 

topological modules. 
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3.2 Methodology 

The method which we intend to use to get results in optimization in such categories hinges on the 

following definitions; 

3.2.1 Amazingly tiny object models (a.t.o.m) 

Let R be a ring, then D = {d  R: d
2 

= 0} is called the collection of a.t.o.m. (amazingly tiny 

object models in R).A map r: D  D will be called a homomorphism of infinitesimals. 

3.2.2 Modules with a.t.o.m 

X/D is a factor module with a.t.o.m. if X is a module. 

3.2.3 Bounded Module 

A module X is bounded if  x  X, d  D, then d.x  D. 

3.2.4 Boundary 

Let X, Y be topological modules with infinitesimals such that X - Y D, then X-Y is the 

boundary of Y and we write  Y. 

 3.2.5 Extremal Object 

Let X be a category of topological modules with infinitesimals, f be morphism in X, xX is an 

extremal object of the morphism f(x)  X. 

 Using the definitions, it should be possible to get a result similar to Lagrange’s method of 

multipliers in the category of topological modules by modifying Sukhinin’s method. 

3.2.6 Cones in Topological Modules 

Let X be a topological module, U a neighbourhood of zero, B a bounded neighbourhood of zero 

in X. Then {hX:xo+t(h + UB)  S}where S  X is a cone.  

 

4. Main Results  

Theorem 2: Let X and Y be ordered topological modules, x0SX,K1 be a cone in X with 

vertex at zero and suppose that the map f: SY satisfies the  condition (x0 + dh + xS)  [f(x0 + 

dh + x) = f(x0)] and f(x0) = 0.  Further, let Z be an ordered topological module, F: S  Z be 
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synthetically differentiable relative to K1 at x0.  If x0 is a point of conditional minimum of the 

map F relative to K1 and under the condition f(x0) = 0, then F(x0) (h)  t (h+UB) for hK1 

.......………………(1) 

Proof: Assume that x0 = 0, F(0) = 0.  Let hK1 and VD in Z.  Set r(x) = F(x) - F(0) (x) and set 

VD in D satisfying V + VV.  Then  U1 and 1 such that F (0) (U1)  V and BdD 

such that 

 (x[d(h + U1B)] S, f(x) = 0.  Which implies that [r(x)dV][F(x)  t(h + UB)]. 

Further  xd (U1B) for which (dh + x) S and f (dh + x) = 0.  

 Here, F(dh + x) U1B and F (dh + x) C, where C is a positive cone in Z.  Further,  

F(0)(dh + x) + r(dh + x)  d F (0)(h) + F(0)(x) + r(dh + x).  Then, 

F(0)(h) + F(0)(d
-1

x) + d
-1

r(dh + x) [F(0)(h) + V + V] C[F(0)(h) + V]  C, that is  

[F(0)(h) + V] C  , since C is closed and V is arbitrary, F(0)(h) C, that is F (0)(h)  d(h + 

UB). 

Sometimes, the condition (1) can be given the form of the rule of Lagrange multipliers. 

Let Z be an ordered topological module, g be a continuous linear operator from X into Z, A be a 

linear operator from X into Y, K be cone in X and suppose that;  

h(Ker A) K: g(h)d(h + UB)……………………..……………(2) 

 

Proposition 2: Suppose that (2) holds, g is linear, A is open (AX = Y), and that A = X then there 

exists on operator 

 (Y, Z) such that (g + oA) = 0 for some xX.  Where (Y, Z) is a class of continuous 

linear maps from Y into Z. 

 

Proof: 

From (2) it follows that kerA  Ker g.  Now we set y = -gA
-1

 for some y  Y.  The continuity 

of  is a consequence of the continuity of g and the openness of A. 

 

Proposition 3 

If f is a linear and continuous function, then it maps a cone to a cone. 
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Proof: {d (h + UB)} is a cone since f (x0 + d (h + UB)} - f(x0) = f(x0){d(h + UB)} + r(h + 

UB), 

And since the function f is linear, then it follows that; 

f (x0 + d (h + UB)} – f(x0) = d {f(x0) (h + UB)} + r (h + UB), since the left hand side is a 

cone, then it follows that the right hand side is also a cone with vertex at zero.  Hence the 

function f maps a cone to a cone. 

 

5. Conclusion  

The results obtained in this work is a great contribution to the study of optimization in the 

category of ordered topological modules 
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